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We derive, step-by-step, the Logistic Regression Algorithm, using Maximum Likelihood Estimation
(MLE). Logistic Regression is used for binary classification tasks (i.e. the class [a.k.a label] is 0 or 1).
Logistic Regression processes a dataset D = {(x(1), t(1)), ..., (x(N), t(N))}, where t(i) ∈ {0, 1} and the feature
vector of the i-th example is φ(x(i)) ∈ RM .

Logistic Regression forms a probabilistic model. It estimates probability distributions of the two classes
(p(t = 1|x;w) and p(t = 0|x;w)). Logistic Regression fits its parameters w ∈ RM to the training data by
Maximum Likelihood Estimation (i.e. finds the w that maximize the probability of the training data).

We introduce the model, give some intuitions to its mechanics in the context of spam classification, then
derive how to find the optimum w given training data.

1 The Logistic Model

Given features for an example, φ(x), logistic regression models the probability of this example belonging to
the class 1 as:

p(t = 1|x;w) = σ(wTφ(x))

And defines the probability of the example belonging to the class 0 as:

p(t = 0|x;w) = 1− p(t = 1|x;w)

= 1− σ(wTφ(x))

Where σ(a) is the sigmoid function. It is defined as:

σ(a) =
1

1 + e−a

The sigmoid function looks like:

It can be shown that the derivative of the sigmoid function is (please verify that yourself):

∂σ(a)

∂a
= σ(a)(1− σ(a))

This derivative will be useful later.
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2 Intuition

The task of Logistic regression is to find the w that works well on the training data. But intuitively, what
is a good w? Let’s take the example of spam vs non-spam email classification problem. In this task, we are
given N emails, each has a label ∈ {NonSpam, Spam}, or, {0, 1}. For illustrative purposes, let’s assume that
the terms viagra and condom appear a lot in spam emails, but on the other hand, the terms school and picnic
appear a lot in non-spam emails. Let’s assume that for each email x, our feature-mapping function, φ(.),
produces a vector of length 10, 000. Here we assume that the English vocabulary contains 10, 000 words.
We define the feature mapping to produce a binary vector: φ(x) will have a 1 on the j-th index if the j-th
English term appears in the email x. i.e. φj(x) = I(x contains j-th word).

Visually, for email x = ”You should buy a viagra”, its feature vector is, according to our described φ(.):

φ(x) =



1
0
0
...
0
1
0
...
0
1
0
...
...
1
...
...



a

aardvark

aback
...
buxom

buy

buzz
...
shot

should

shop
...
...
viagra
...
...

Disclaimer: We don’t intend to dive deep into computational linguistics and information retrieval,

as they deserve a book on their own. Although binary vectors do reasonably well in text classification,

they are much outperformed by TF-IDF vectors and more complex feature representations.

Logistic regression learns the parameter w ∈ RM (where M = 10, 000 in our example). The optimal w
should have positive values for terms coming from the positive class (spam words, like viagra and condom),
and has negative values for ’non-spam words’ (like school and picnic). Visually, logistic regression should
learn w that looks like:
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w =



-0.2
-2.8

...
3.1
...

-1.2
...

-0.9
...

12.7
...



a

aardvark
...
condom
...
picnic
...
school
...
viagra
...

Having a larger positive value means that the term was strongly more observed in the positive class
(spam) in the training set. Similarily, more negative means the word is more observed in the negative class
(non-spam).

Given some test email x, Logistic regression classifies the email by computing p(t = 1|x;w) = σ(wTφ(x))
and p(t = 0|x;w) = 1 − σ(wTφ(x)) then classifying to the class that has a larger probability measure.
Intuitively, if the x contains a lot of spam words, then the argument of the sigmoid function (wTφ(x)) will
be positive. Look at the shape of the sigmoid function above. If wTφ (x) > 0, then σ(wTφ(x)) > 0.5, which
means p(t = 1|x;w) > p(t = 0|x;w), causing the email to be classified as spam.

3 Maximum Likelihood Estimation

The likelihood function L(w) is defined as the probability that the current w assigns to the training set:

L(w) =

N∏
i=1

p(t(i)|x(i);w)

However, we have two separate terms for p(t = 1|x;w) and p(t = 0|x;w). Nonetheless, it is possible to
combine those two terms into one like:

p(t(i)|x(i);w) = p(t = 1|x(i);w)t
(i)

p(t = 0|x(i);w)1−t(i)

The above trick is used a lot in Machine Learning. It is easy to see that only one of the terms will be
active depending on the value of t. For t ∈ {0, 1}, one if the terms will have power 1 and the other will have
power 0. Logistic regression tries to finds the w that maximizes the likelihood L(w), which is the same w
that maximizes the log-likelihood l(w) = logL(w).

arg max
w

L(w) = arg max
w

logL(w)

= arg max
w

l(w)

3



Below, we derive how to find w that maximizes l(w). To make the math compact, we set φ(x) = x:

arg max
w

l(w) = arg max
w

log

N∏
i=1

p(t(i)|x(i);w)

= arg max
w

N∑
i=1

log p(t(i)|x(i);w)

= arg max
w

N∑
i=1

log
[
p(t = 1|x(i);w)t

(i)

p(t = 0|x(i);w)1−t(i)
]

= arg max
w

N∑
i=1

log
[
p(t = 1|x(i);w)t

(i)
]

+ log
[
p(t = 0|x(i);w)1−t(i)

]
= arg max

w

N∑
i=1

t(i) log
[
p(t = 1|x(i);w)

]
+ (1− t(i)) log

[
p(t = 0|x(i);w)

]
= arg max

w

N∑
i=1

t(i) log
[
σ(wTx(i))

]
+ (1− t(i)) log

[
1− σ(wTx(i))

]
In order to find the w that maximizes the expression, we can take its derivative with respect to w:

∇wl(w) = ∇w

N∑
i=1

t(i) log
[
σ(wTx(i))

]
+ (1− t(i)) log

[
1− σ(wTx(i))

]
by chain rule:

=

N∑
i=1

t(i)
(

1

σ(wTx(i))

)
×
(
σ(wTx(i))(1− σ(wTx(i)))

)
× x(i)

+ (1− t(i))
(

1

1− σ(wTx(i))

)
×−1×

(
σ(wTx(i))(1− σ(wTx(i)))

)
× x(i)

=

N∑
i=1

t(i)
(

1− σ(wTx(i))
)
x(i) + (1− t(i))(−1)

(
σ(wTx(i))

)
x(i)

=

N∑
i=1

t(i)x(i) − t(i)σ(wTx(i))x(i) − σ(wTx(i))x(i) + t(i)σ(wTx(i))x(i)

=

N∑
i=1

t(i)x(i) − σ(wTx(i))x(i)

∇wl(w) =

N∑
i=1

(
t(i) − σ(wTx(i))

)
x(i)

Finally, it is important to note that it is not possible to set ∇wl(w) = 0 and solve for w, as the σ(.)
is a non-linear function. Therefore, the parameter w is estimated by Gradient Ascent over the likelihood
function or by Newton’s method. Note: gradient ascent is used to maximize a measure (ex: likelihood),
contrary to gradient descent which is used to minimize a measure (ex: an error function).

4


	The Logistic Model
	Intuition
	Maximum Likelihood Estimation

