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We derive, step-by-step, the Linear Regression Algorithm, using Matrix Algebra. Linear Regression is
generally used to predict a continuous value. For example, predicting the price of a house. Linear Regression
algorithms process a dataset of the form {(x1, t1), . . . , (xN , tN )}. Where xn and tn are, respectively, the
features and the true/target value of the n-th training example.

1 Matrix Calculus Formulae

During this derivation, we will assume that you are familiar with deriving the following matrix calculus rules:

• ∇xb
Tx = b

• ∇xxTAx = 2Ax (ifA ∈ S)

• ∇2
xxTAx = 2A (ifA ∈ S)

If you are not familiar with these rules, please study (and derive) sections 4.3 and 4.4 of http://cs229.
stanford.edu/section/cs229-linalg.pdf

2 Setting up system of equations

2.1 Reminder: from Algebra to Matrices

Generally, if you have a system of equations:

w1 × 14 + w2 × 16 = 7

w1 × 4 + w2 × 4 = 13

Where you would like to find the w1 and w2 that satisfy the above equations, you could solve for w1 from
the first equation and plug it into the second. Or alternatively, you can setup a Matrix multiplication that
is equivalent to the above equations as:[

14 16
4 4

] [
w1

w2

]
=

[
7
13

]
You can then solve for w1 and w2 by inverting the left-matrix and multiplying it by the right-hand side.

2.2 Linear Regression in Matrix form

Assume your training data is housing prices. Each house has its features: square-foot area, number of
bedrooms, number of bathrooms, . . . . Each house has a price. The data can be written this tabular form:

x = [ area bedrooms bathrooms] t
2000 3 2 $200,000
2500 4 4 $280,000
1300 1 1 $130,000

...
...
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Generally speaking, we can represent our data as a data matrix and a target values vector as:

xT
1

xT
2
...
...

xT
N

 and



t1
t2
...
...
tN


In addition, it is often times desirable to have a transformation of the features of training examples.

This is done through a basis function (denoted φ(.)). Just for the sake of demonstration, if x = [x1, x2, x3]
where x1, x2, x3 are [square-foot area, # bedrooms, # bathrooms], then one could design a basis function of
φ(x) = [1, log(x1), x22, x3, x

2
3]. Let the size of the vector produced by φ(.) be M . Normally, basis functions are

designed around intuitions around data. Each application (Information Retrieval versus Computer Vision)
have different ways in coming-up with basis functions that fits the field of interest best. Nonetheless, our
data can be represented as a design matrix and a target values vector as:

φ(x1)T

φ(x2)T

...

...
φ(xN )T

 and



t1
t2
...
...
tN


The Matrix Formulation of linear regression try to find the weights vector w = [w1, . . . ,wM] which satisfies:

φ(x1)T

φ(x2)T

...

...
φ(xN )T




w1

w2

...
wM

 =



t1
t2
...
...
tN


Where φ(x) ∈ RM . In practice, M << N , because of the abundance of training data and because M

should not be chosen larger than N to avoid over-fitting. In the usual case of M << N , there aren’t a set of
weights w1, . . . , wM that exactly solve the above equation (for example, the design matrix is not invertible,
or as in most cases, not a square matrix). Therefore, the linear regression algorithm tries to find the weights
w that produce values that are as close as possible to the (true) target values. Notice that the left-hand side
in the equation above (Φw) is a vector of size N . Informally, we want to find the w that:

φ(x1)T

φ(x2)T

...

...
φ(xN )T




w1

w2

...
wM

 ≈


t1
t2
...
...
tN


Or, to reduce notation:

Φw ≈ t

3 Solving for w in Matrix form

The w that makes the left-hand side as close as possible to the right-hand side can be written as this
minimization problem:

min
w

1

2
||Φw − t||2

2



The term under the minimization is referred to squared error (also known as sum of squares error). It is
common to write the above as:

min
w

E(w); where E(w) =
1

2
||Φw − t||2

Recall that ||v|| is the norm (L2-norm) of a vector v. Also recall the recall the identity

||v|| =

√√√√ N∑
i

v2
i =
√

vTv; wherev ∈ RN

Consequently:

min
w

1

2
||Φw − t||2 = min

w
(Φw − t)T(Φw − t)

To minimize the above expression with respect to w, we can take the (vector) derivative of the expression
with respect to w as:

∇w

[
1

2
(Φw − t)T(Φw − t)

]
= ∇w

[
1

2
(wTΦT − tT)(Φw − t)

]

= ∇w

[
1

2
(wTΦTΦw − tTΦw −wTΦTt + tTt)

]
Note that the last term in the above expression does not depend on w and its derivative w.r.t w is zero.

In addition, wTΦTt (and also tT Φw) is a 1 × 1 matrix (a real number). Work-out the dimensions of this
to verify yourself. The transpose of a real-number is itself. i.e. wTΦTt = (wTΦTt)T = tTΦw. Therefore,
the above expression simplifies to:

= ∇w

[
1

2
(wTΦTΦw − 2tTΦw)

]
Using the matrix calculus formulae at the beginning of this document, the above derivative is:

∇wE(w) =
1

2
(2ΦTΦw − 2(tTΦ)T) = ΦTΦw −ΦTt

Note that ΦT Φ is symmetric.

3.1 Closed Form Solution

The w that minimizes E(w) (lets call it w∗ can be found in multiple ways. Solving for the minimum w∗ in
closed form, means that solving for w in ∇wE(w) = 0:

ΦT Φw∗ − ΦT t = 0

ΦT Φw∗ = ΦT t

w∗ = (ΦT Φ)−1ΦT t

3.2 Gradient Descent

Gradient Descent and Stochastic Gradient Descent are not going to be in this handout for now. They will
be added later
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4 Regularized Linear Regression

In practice, it works better to fit the w parameter to the data while also placing a constraint on w to be
small. This makes the w generalize better and have better performance on unseen test data. It is common
to do set up the following minimization problem:

min
w

Ẽ(w) =
1

2
||Φw − t||2 +

λ

2
||w||

∇wẼ(w) = ∇w

[
1

2
(Φw − t)T(Φw − t) +

λ

2
wTw

]
= ∇w

[
1

2
(Φw − t)T(Φw − t) +

λ

2
wTIw

]
= ΦT Φw −ΦTt + λw

In closed form:
ΦT Φw∗ − ΦT t + λw∗ = 0

ΦT Φw∗ + λw∗ = ΦT t

(ΦT Φ + λI)w∗ = ΦTt

w∗ = (ΦT Φ + λI)−1ΦTt
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