Derivation of Linear Regression

Author: Sami Abu-El-Haija (samihaija@umich.edu)

We derive, step-by-step, the Linear Regression Algorithm, using Matrix Algebra. Linear Regression is
generally used to predict a continuous value. For example, predicting the price of a house. Linear Regression
algorithms process a dataset of the form {(x1,¢1),...,(Xn,tn)}. Where x,, and ¢, are, respectively, the
features and the true/target value of the n-th training example.

1 Matrix Calculus Formulae

During this derivation, we will assume that you are familiar with deriving the following matrix calculus rules:
o V.0T'x=10
o V,xTAx =2Ax (ifA€S)
o VixTAx =24 (ifA€S)

If you are not familiar with these rules, please study (and derive) sections 4.3 and 4.4 of http://cs229.
stanford.edu/section/cs229-1inalg.pdf

2 Setting up system of equations

2.1 Reminder: from Algebra to Matrices
Generally, if you have a system of equations:
wyp X 14+w2 x16=17

w1><4+w2><4=13

Where you would like to find the w; and ws that satisfy the above equations, you could solve for w; from
the first equation and plug it into the second. Or alternatively, you can setup a Matrix multiplication that

is equivalent to the above equations as:
14 16 wy | |7
4 4 wo o 13

You can then solve for wy and ws by inverting the left-matrix and multiplying it by the right-hand side.

2.2 Linear Regression in Matrix form

Assume your training data is housing prices. Each house has its features: square-foot area, number of

bedrooms, number of bathrooms, Each house has a price. The data can be written this tabular form:
x = |area bedrooms bathrooms] | t
2000 3 2 $200,000
2500 4 4 $280,000
1300 1 1 $130,000

http://cs229.stanford.edu/section/cs229-linalg.pdf
http://cs229.stanford.edu/section/cs229-linalg.pdf

Generally speaking, we can represent our data as a data matriz and a target values vector as:

T
X% tl
X5 f,g
and
T
XN — tN

In addition, it is often times desirable to have a transformation of the features of training examples.
This is done through a basis function (denoted ¢(.)). Just for the sake of demonstration, if x = [z1, 22, 23]
where 1, 22, z3 are [square-foot area, # bedrooms, # bathrooms]|, then one could design a basis function of
é(x) = [1,log(z1), 73, 23, 23]. Let the size of the vector produced by ¢(.) be M. Normally, basis functions are
designed around intuitions around data. Each application (Information Retrieval versus Computer Vision)
have different ways in coming-up with basis functions that fits the field of interest best. Nonetheless, our
data can be represented as a design matrixz and a target values vector as:

¢(X1)T E— ty
1E) ta
: and :
¢(XN)T E— 3
The Matrix Formulation of linear regression try to find the weights vector w = [wy, ..., wpn] which satisfies:
1E 3] L — t
¢(X2)T E— w1 12
W2

: Wy :

¢(XN)T E— 3

Where ¢(x) € RM. In practice, M << N, because of the abundance of training data and because M
should not be chosen larger than N to avoid over-fitting. In the usual case of M << N, there aren’t a set of
weights wy, ..., wys that exactly solve the above equation (for example, the design matrix is not invertible,
or as in most cases, not a square matrix). Therefore, the linear regression algorithm tries to find the weights
w that produce values that are as close as possible to the (true) target values. Notice that the left-hand side
in the equation above (®w) is a vector of size N. Informally, we want to find the w that:

P(x1)" ty
P(x2)" w1 t
w2
: W
¢(xn)" tn
Or, to reduce notation:
dw x t

3 Solving for w in Matrix form

The w that makes the left-hand side as close as possible to the right-hand side can be written as this

minimization problem:

1
min§\|®w —t?

The term under the minimization is referred to squared error (also known as sum of squares error). It is
common to write the above as:

1
min F(w); where E(w) = §||<I>w —t|?

w

Recall that ||v|| is the norm (L2-norm) of a vector v. Also recall the recall the identity

= VvTv; wherev € RN

Consequently:
1
min §H<I>w —t||?* = min(®w — t)T (®w — t)

To minimize the above expression with respect to w, we can take the (vector) derivative of the expression
with respect to w as:

Ve [;@w)T (Bw — t)} — Ve [;<WT¢T T (Bw — t)}
=Vw [;(WT@T@W —tTow — wTeTt + tTt)}

Note that the last term in the above expression does not depend on w and its derivative w.r.t w is zero.
In addition, wT®Tt (and also t?®w) is a 1 x 1 matrix (a real number). Work-out the dimensions of this
to verify yourself. The transpose of a real-number is itself. i.e. wT®Tt = (wT®Tt)T = tT®w. Therefore,
the above expression simplifies to:

=Vw [;(WT‘I)T(I’W - 2tT<I>w)]

Using the matrix calculus formulae at the beginning of this document, the above derivative is:
1
VwE(w) = 5(2<I>T<1>w —2(tT®)T) = dTow — ®Tt
Note that ®7® is symmetric.

3.1 Closed Form Solution

The w that minimizes E(w) (lets call it w* can be found in multiple ways. Solving for the minimum w* in
closed form, means that solving for w in Vy E(w) = 0:

dTow* — Tt =0
Tow* = o'
wh = (7)o"t

3.2 Gradient Descent

Gradient Descent and Stochastic Gradient Descent are not going to be in this handout for now. They will
be added later

4 Regularized Linear Regression

In practice, it works better to fit the w parameter to the data while also placing a constraint on w to be
small. This makes the w generalize better and have better performance on unseen test data. It is common
to do set up the following minimization problem:

- 1 A
min E(w) = §||(I)W —t]? + §||W||
~ 1 T A T
VwE(W) = Vy §(<I>w —t)" (Pw —t) + SV W
1 T A T
=Vw 5((1)“’ —t)" (Pw —t) + v Iw
=3Tdw — ®Tt + \w
In closed form:
dTow* — o1t + Aw* =0
dTow* + aw* = &7t
(®7® + AD)w* = @7t
w' = (®T® + AI) 1Tt

	Matrix Calculus Formulae
	Setting up system of equations
	Reminder: from Algebra to Matrices
	Linear Regression in Matrix form

	Solving for w in Matrix form
	Closed Form Solution
	Gradient Descent

	Regularized Linear Regression

