Derivation of Linear Regression

Author: Sami Abu-El-Haija (samihaija@umich.edu)

We derive, step-by-step, the Linear Regression Algorithm, using Matrix Algebra. Linear Regression is generally used to predict a continuous value. For example, predicting the price of a house. Linear Regression algorithms process a dataset of the form $\left\{\left(\mathbf{x}_{1}, t_{1}\right), \ldots,\left(\mathbf{x}_{N}, t_{N}\right)\right\}$. Where \mathbf{x}_{n} and t_{n} are, respectively, the features and the true/target value of the n-th training example.

1 Matrix Calculus Formulae

During this derivation, we will assume that you are familiar with deriving the following matrix calculus rules:

- $\nabla_{\mathbf{x}} b^{T} \mathbf{x}=b$
- $\nabla_{\mathbf{x}} \mathbf{x}^{T} A \mathbf{x}=2 A \mathbf{x} \quad($ if $A \in \mathbb{S})$
- $\nabla_{\mathbf{x}}^{2} \mathbf{x}^{T} A \mathbf{x}=2 A \quad($ if $A \in \mathbb{S})$

If you are not familiar with these rules, please study (and derive) sections 4.3 and 4.4 of http://cs229. stanford.edu/section/cs229-linalg.pdf

2 Setting up system of equations

2.1 Reminder: from Algebra to Matrices

Generally, if you have a system of equations:

$$
\begin{aligned}
& w_{1} \times 14+w_{2} \times 16=7 \\
& w_{1} \times 4+w_{2} \times 4=13
\end{aligned}
$$

Where you would like to find the w_{1} and w_{2} that satisfy the above equations, you could solve for w_{1} from the first equation and plug it into the second. Or alternatively, you can setup a Matrix multiplication that is equivalent to the above equations as:

$$
\left[\begin{array}{cc}
14 & 16 \\
4 & 4
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{c}
7 \\
13
\end{array}\right]
$$

You can then solve for w_{1} and w_{2} by inverting the left-matrix and multiplying it by the right-hand side.

2.2 Linear Regression in Matrix form

Assume your training data is housing prices. Each house has its features: square-foot area, number of bedrooms, number of bathrooms, Each house has a price. The data can be written this tabular form:

$\mathrm{x}=$	[area	bedrooms	bathrooms]	t
	2000	3	2	\$200,000
	2500	4	4	\$280,000
	1300	1	1	\$130,000
	:			\vdots

Generally speaking, we can represent our data as a data matrix and a target values vector as:

$$
\left[\begin{array}{ccl}
\square & \mathbf{x}_{1}^{T} & \square \\
\mathbf{x}_{2}^{T} & \square \\
\vdots \\
\vdots \\
& \mathbf{x}_{N}^{T} & \\
\square
\end{array}\right] \text { and }\left[\begin{array}{c}
t_{1} \\
t_{2} \\
\vdots \\
\vdots \\
t_{N}
\end{array}\right]
$$

In addition, it is often times desirable to have a transformation of the features of training examples. This is done through a basis function (denoted $\phi()$.$) . Just for the sake of demonstration, if \mathbf{x}=\left[x_{1}, x_{2}, x_{3}\right]$ where x_{1}, x_{2}, x_{3} are [square-foot area, \# bedrooms, \# bathrooms], then one could design a basis function of $\phi(\mathbf{x})=\left[1, \log \left(x_{1}\right), x_{2}^{2}, x_{3}, x_{3}^{2}\right]$. Let the size of the vector produced by $\phi($.$) be M$. Normally, basis functions are designed around intuitions around data. Each application (Information Retrieval versus Computer Vision) have different ways in coming-up with basis functions that fits the field of interest best. Nonetheless, our data can be represented as a design matrix and a target values vector as:

$$
\left[\begin{array}{c}
\square\left(\mathbf{x}_{1}\right)^{T} \\
\hline \phi\left(\mathbf{x}_{2}\right)^{T} \\
\vdots \\
\vdots \\
\phi\left(\mathbf{x}_{N}\right)^{T} \\
\square
\end{array}\right] \text { and }\left[\begin{array}{c}
t_{1} \\
t_{2} \\
\vdots \\
\vdots \\
t_{N}
\end{array}\right]
$$

The Matrix Formulation of linear regression try to find the weights vector $\mathbf{w}=\left[\mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{M}}\right]$ which satisfies:

Where $\phi(\mathbf{x}) \in \mathbb{R}^{M}$. In practice, $M \ll N$, because of the abundance of training data and because M should not be chosen larger than N to avoid over-fitting. In the usual case of $M \ll N$, there aren't a set of weights w_{1}, \ldots, w_{M} that exactly solve the above equation (for example, the design matrix is not invertible, or as in most cases, not a square matrix). Therefore, the linear regression algorithm tries to find the weights \mathbf{w} that produce values that are as close as possible to the (true) target values. Notice that the left-hand side in the equation above $(\Phi \mathbf{w})$ is a vector of size N. Informally, we want to find the \mathbf{w} that:

$$
\left[\begin{array}{c}
\square\left(\mathbf{x}_{1}\right)^{T} \\
\left.\hline-\mathbf{x}_{2}\right)^{T} \\
\vdots \\
\vdots \\
\phi\left(\mathbf{x}_{N}\right)^{T}
\end{array}\right]\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{M}
\end{array}\right] \approx\left[\begin{array}{c}
t_{1} \\
t_{2} \\
\vdots \\
\vdots \\
t_{N}
\end{array}\right]
$$

Or, to reduce notation:

$$
\Phi \mathbf{w} \approx \mathbf{t}
$$

3 Solving for w in Matrix form

The \mathbf{w} that makes the left-hand side as close as possible to the right-hand side can be written as this minimization problem:

$$
\min _{\mathbf{w}} \frac{1}{2}\|\Phi \mathbf{w}-\mathbf{t}\|^{\mathbf{2}}
$$

The term under the minimization is referred to squared error (also known as sum of squares error). It is common to write the above as:

$$
\min _{\mathbf{w}} E(\mathbf{w}) ; \text { where } \mathbf{E}(\mathbf{w})=\frac{\mathbf{1}}{\mathbf{2}}\|\boldsymbol{\Phi} \mathbf{w}-\mathbf{t}\|^{\mathbf{2}}
$$

Recall that $\|\mathbf{v}\|$ is the norm (L2-norm) of a vector \mathbf{v}. Also recall the recall the identity

$$
\|\mathbf{v}\|=\sqrt{\sum_{\mathbf{i}}^{\mathbf{N}} \mathbf{v}_{\mathbf{i}}^{\mathbf{2}}}=\sqrt{\mathbf{v}^{\mathbf{T}} \mathbf{v}} ; \text { wherev } \in \mathbb{R}^{\mathbf{N}}
$$

Consequently:

$$
\min _{\mathbf{w}} \frac{1}{2}\|\Phi \mathbf{w}-\mathbf{t}\|^{\mathbf{2}}=\min _{\mathbf{w}}(\Phi \mathbf{w}-\mathbf{t})^{\mathbf{T}}(\mathbf{\Phi} \mathbf{w}-\mathbf{t})
$$

To minimize the above expression with respect to \mathbf{w}, we can take the (vector) derivative of the expression with respect to \mathbf{w} as:

$$
\begin{gathered}
\nabla_{\mathbf{w}}\left[\frac{1}{2}(\Phi \mathbf{w}-\mathbf{t})^{\mathbf{T}}(\boldsymbol{\Phi} \mathbf{w}-\mathbf{t})\right]=\nabla_{\mathbf{w}}\left[\frac{1}{2}\left(\mathbf{w}^{\mathbf{T}} \boldsymbol{\Phi}^{\mathbf{T}}-\mathbf{t}^{\mathbf{T}}\right)(\boldsymbol{\Phi} \mathbf{w}-\mathbf{t})\right] \\
\quad=\nabla_{\mathbf{w}}\left[\frac{1}{2}\left(\mathbf{w}^{\mathbf{T}} \boldsymbol{\Phi}^{\mathbf{T}} \boldsymbol{\Phi} \mathbf{w}-\mathbf{t}^{\mathbf{T}} \boldsymbol{\Phi} \mathbf{w}-\mathbf{w}^{\mathbf{T}} \boldsymbol{\Phi}^{\mathbf{T}} \mathbf{t}+\mathbf{t}^{\mathbf{T}} \mathbf{t}\right)\right]
\end{gathered}
$$

Note that the last term in the above expression does not depend on \mathbf{w} and its derivative w.r.t \mathbf{w} is zero. In addition, $\mathbf{w}^{\mathbf{T}} \boldsymbol{\Phi}^{\mathbf{T}} \mathbf{t}$ (and also $\mathbf{t}^{T} \Phi \mathbf{w}$) is a 1×1 matrix (a real number). Work-out the dimensions of this to verify yourself. The transpose of a real-number is itself. i.e. $\mathbf{w}^{\mathbf{T}} \boldsymbol{\Phi}^{\mathbf{T}} \mathbf{t}=\left(\mathbf{w}^{\mathbf{T}} \boldsymbol{\Phi}^{\mathbf{T}} \mathbf{t}\right)^{\mathbf{T}}=\mathbf{t}^{\mathbf{T}} \boldsymbol{\Phi} \mathbf{w}$. Therefore, the above expression simplifies to:

$$
=\nabla_{\mathbf{w}}\left[\frac{1}{2}\left(\mathbf{w}^{\mathbf{T}} \boldsymbol{\Phi}^{\mathbf{T}} \mathbf{\Phi} \mathbf{w}-\mathbf{2} \mathbf{t}^{\mathbf{T}} \boldsymbol{\Phi} \mathbf{w}\right)\right]
$$

Using the matrix calculus formulae at the beginning of this document, the above derivative is:

$$
\nabla_{\mathbf{w}} E(\mathbf{w})=\frac{1}{2}\left(2 \boldsymbol{\Phi}^{\mathbf{T}} \boldsymbol{\Phi} \mathbf{w}-2\left(\mathbf{t}^{\mathbf{T}} \boldsymbol{\Phi}\right)^{\mathbf{T}}\right)=\boldsymbol{\Phi}^{\mathbf{T}} \boldsymbol{\Phi} \mathbf{w}-\boldsymbol{\Phi}^{\mathbf{T}} \mathbf{t}
$$

Note that $\Phi^{T} \Phi$ is symmetric.

3.1 Closed Form Solution

The \mathbf{w} that minimizes $E(\mathbf{w})$ (lets call it \mathbf{w}^{*} can be found in multiple ways. Solving for the minimum \mathbf{w}^{*} in closed form, means that solving for \mathbf{w} in $\nabla_{\mathbf{w}} E(\mathbf{w})=\mathbf{0}$:

$$
\begin{gathered}
\Phi^{T} \Phi \mathbf{w}^{*}-\Phi^{T} \mathbf{t}=0 \\
\Phi^{T} \Phi \mathbf{w}^{*}=\Phi^{T} \mathbf{t} \\
\mathbf{w}^{*}=\left(\Phi^{T} \Phi\right)^{-1} \Phi^{T} \mathbf{t}
\end{gathered}
$$

3.2 Gradient Descent

Gradient Descent and Stochastic Gradient Descent are not going to be in this handout for now. They will be added later

4 Regularized Linear Regression

In practice, it works better to fit the \mathbf{w} parameter to the data while also placing a constraint on \mathbf{w} to be small. This makes the \mathbf{w} generalize better and have better performance on unseen test data. It is common to do set up the following minimization problem:

$$
\begin{aligned}
\min _{\mathbf{w}} \tilde{E}(\mathbf{w}) & =\frac{1}{2}\|\Phi \mathbf{w}-\mathbf{t}\|^{\mathbf{2}}+\frac{\lambda}{\mathbf{2}}\|\mathbf{w}\| \\
\nabla_{\mathbf{w}} \tilde{E}(\mathbf{w}) & =\nabla_{\mathbf{w}}\left[\frac{1}{2}(\Phi \mathbf{w}-\mathbf{t})^{\mathbf{T}}(\Phi \mathbf{w}-\mathbf{t})+\frac{\lambda}{\mathbf{2}} \mathbf{w}^{\mathbf{T}} \mathbf{w}\right] \\
& =\nabla_{\mathbf{w}}\left[\frac{1}{2}(\Phi \mathbf{w}-\mathbf{t})^{\mathbf{T}}(\Phi \mathbf{w}-\mathbf{t})+\frac{\lambda}{2} \mathbf{w}^{\mathbf{T}} \mathbf{I} \mathbf{w}\right] \\
& =\Phi^{T} \Phi \mathbf{w}-\boldsymbol{\Phi}^{\mathbf{T}} \mathbf{t}+\lambda \mathbf{w}
\end{aligned}
$$

In closed form:

$$
\begin{gathered}
\Phi^{T} \Phi \mathbf{w}^{*}-\Phi^{T} \mathbf{t}+\lambda \mathbf{w}^{*}=0 \\
\Phi^{T} \Phi \mathbf{w}^{*}+\lambda \mathbf{w}^{*}=\Phi^{T} \mathbf{t} \\
\left(\Phi^{T} \Phi+\lambda \mathbf{I}\right) \mathbf{w}^{*}=\Phi^{\mathbf{T}} \mathbf{t} \\
\mathbf{w}^{*}=\left(\Phi^{T} \Phi+\lambda \mathbf{I}\right)^{-\mathbf{1}} \boldsymbol{\Phi}^{\mathbf{T}} \mathbf{t}
\end{gathered}
$$

